Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Int J Mol Sci ; 24(11)2023 May 31.
Article in English | MEDLINE | ID: covidwho-20238922

ABSTRACT

Despite the fact that coronavirus disease 2019 (COVID-19) treatment and management are now considerably regulated, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still one of the leading causes of death in 2022. The availability of COVID-19 vaccines, FDA-approved antivirals, and monoclonal antibodies in low-income countries still poses an issue to be addressed. Natural products, particularly traditional Chinese medicines (TCMs) and medicinal plant extracts (or their active component), have challenged the dominance of drug repurposing and synthetic compound libraries in COVID-19 therapeutics. Their abundant resources and excellent antiviral performance make natural products a relatively cheap and readily available alternative for COVID-19 therapeutics. Here, we deliberately review the anti-SARS-CoV-2 mechanisms of the natural products, their potency (pharmacological profiles), and application strategies for COVID-19 intervention. In light of their advantages, this review is intended to acknowledge the potential of natural products as COVID-19 therapeutic candidates.


Subject(s)
Biological Products , COVID-19 , Humans , SARS-CoV-2 , COVID-19 Vaccines , Biological Products/pharmacology , Biological Products/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
2.
Emerg Microbes Infect ; 12(1): 2208678, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2297250

ABSTRACT

Prospective cohort study to investigate the potential exposure to the Middle East Respiratory Syndrome-Coronavirus (MERS-CoV) following Hajj pilgrims is still very limited. Here, we report the antibody seroconversion study results obtained from successive three years cohort studies (2016-2018) involving the Malaysian Hajj pilgrims returning from the Middle East. A cohort study of Hajj pilgrims from Malaysia enrolled 2,863 participants from 2016-2018, all of whom consented to provide paired blood samples for both pre- and post-Hajj travel to the Middle East. ELISAs and micro-neutralization assays were performed to detect the presence of MERS-CoV IgG antibodies. Sociodemographic data, symptoms experienced during Hajj, and history of exposure to camels or camel products were recorded using structured pre- and post-Hajj questionnaires. A 4-fold increase in anti-MERS-CoV IgG between paired pre-Hajj and post-Hajj serum samples in twelve participants was observed. None of the twelve ELISA-positive sera had detectable levels of virus-neutralizing antibodies. All reportedly had mild symptoms of respiratory symptoms at a certain point during the pilgrimage, implying mild or asymptomatic infections. No association between post-Hajj serum positivity and a history of exposure to camels or camel products was obtained. Findings from the study suggest that serologic conversion to MERS-CoV occurred in at least 0.6% of the Hajj pilgrims returning from the Middle East. Since all the seroconvertants had mild to no symptoms during the sampling period, it highlights the likelihood of occurrence of only low infectivity spillover infections among the Hajj pilgrims.


Subject(s)
Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Animals , Camelus , Prospective Studies , Cohort Studies , Seroconversion , Middle East/epidemiology , Travel , Saudi Arabia/epidemiology
3.
Sci Rep ; 11(1): 22105, 2021 11 11.
Article in English | MEDLINE | ID: covidwho-1758317

ABSTRACT

The COVID-19 pandemic first emerged in Malaysia in Jan 2020. As of 12th Sept 2021, 1,979,698 COVID-19 cases that occurred over three major epidemic waves were confirmed. The virus contributing to the three epidemic waves has not been well-studied. We sequenced the genome of 22 SARS-CoV-2 strains detected in Malaysia during the second and the ongoing third wave of the COVID-19 epidemic. Detailed phylogenetic and genetic variation analyses of the SARS-CoV-2 isolate genomes were performed using these newly determined sequences and all other available sequences. Results from the analyses suggested multiple independent introductions of SARS-CoV-2 into Malaysia. A new B.1.524(G) lineage with S-D614G mutation was detected in Sabah, East Malaysia and Selangor, Peninsular Malaysia on 7th October 2020 and 14th October 2020, respectively. This new B.1.524(G) group was not the direct descendant of any of the previously detected lineages. The new B.1.524(G) carried a set of genetic variations, including A701V (position variant frequency = 0.0007) in Spike protein and a novel G114T mutation at the 5'UTR. The biological importance of the specific mutations remained unknown. The sequential appearance of the mutations, however, suggests that the spread of the new B.1.524(G) lineages likely begun in Sabah and then spread to Selangor. The findings presented here support the importance of SARS-CoV-2 full genome sequencing as a tool to establish an epidemiological link between cases or clusters of COVID-19 worldwide.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/genetics , Genetic Variation , Genome, Viral , Humans , Malaysia/epidemiology , Pandemics , Phylogeny
4.
Sci Rep ; 11(1): 20502, 2021 10 15.
Article in English | MEDLINE | ID: covidwho-1469992

ABSTRACT

The COVID-19 is difficult to contain due to its high transmissibility rate and a long incubation period of 5 to 14 days. Moreover, more than half of the infected patients were young and asymptomatic. Virus transmission through asymptomatic patients is a major challenge to disease containment. Due to limited treatment options, preventive measures play major role in controlling the disease spread. Gargling with antiseptic formulation may have potential role in eliminating the virus in the throat. Four commercially available mouthwash/gargle formulations were tested for virucidal activity against SARS-CoV-2 in both clean (0.3 g/l BSA) and dirty (0.3 g/l BSA + 3 mL/L human erythrocytes) conditions at time points 30 and 60 s. The virus was isolated and propagated in Vero E6 cells. The cytotoxicity of the products to the Vero E6 was evaluated by kill time assay based on the European Standard EN14476:2013/FprA1:2015 protocol. Virus titres were calculated as 50% tissue culture infectious dose (TCID50/mL) using the Spearman-Karber method. A reduction in virus titer of 4 log10 corresponds to an inactivation of ≥ 99.99%. Formulations with cetylperidinium chloride, chlorhexidine and hexitidine achieved > 4 log10 reduction in viral titres when exposed within 30 s under both clean and dirty conditions. Thymol formulations achieved only 0.5 log10 reduction in viral titres. In addition, salt water was not proven effective. Gargle formulations with cetylperidinium chloride, chlorhexidine and hexetidine have great potential in reducing SAR-CoV-2 at the source of entry into the body, thus minimizing risk of transmission of COVID-19.


Subject(s)
COVID-19 Drug Treatment , COVID-19/prevention & control , Erythrocytes/virology , Mouthwashes , SARS-CoV-2/drug effects , Animals , Anti-Infective Agents, Local , Antiviral Agents , Cetylpyridinium , Chlorhexidine/analogs & derivatives , Chlorhexidine/chemistry , Chlorocebus aethiops , Erythrocytes/drug effects , Humans , Thymol/chemistry , Vero Cells , Viral Load , Water
5.
Br Dent J ; 2020 Dec 10.
Article in English | MEDLINE | ID: covidwho-971741

ABSTRACT

Introduction Virus particles in respiratory droplets and aerosols generated during medical/dental procedures are a potential source of SARS-CoV-2 cross infection. In the dental setting, oral decontamination could be an important adjunct to personal protective equipment and is recommended by a number of national COVID-19 guidance documents for dental settings.Aim To assess the in vitrovirucidal activity of an oral povidone iodine (PVP-I) product against SARS-CoV-2.Material and methods BETADINE gargle and mouthwash (1% PVP-I) was tested against SARS-CoV-2 virus under both clean and dirty conditions using a suspension assay based on EN14476 methodology. Virucidal activity of the product, undiluted and at 1:2 dilution, was tested at contact times of 15, 30 and 60 seconds. Viral titres were calculated using the Spearman-Kärber method and reported as median tissue culture infectious dose (TCID50/ml).Results The undiluted product achieved >5 log10 reduction in viral titres compared to the control at 15, 30 and 60 seconds under both clean and dirty conditions. At a twofold dilution (0.5% PVP-I), the test product demonstrated >4 log10 kill at 15 seconds and >5 log10 kill at 30 and 60 seconds in both clean and dirty conditions.Conclusion PVP-I gargle and mouthwash product, undiluted and at 1:2 dilution, demonstrated potent and rapid virucidal activity (≥4 log10 reduction of viral titre) in 15 seconds against SARS-CoV-2 in vitro. The PVP-I gargle and mouthwash product is widely available and could be readily integrated into infection control measures during dental treatment including pre-procedural oral decontamination.

SELECTION OF CITATIONS
SEARCH DETAIL